A noise-resilient collaborative learning approach to content-based image retrieval

نویسندگان

  • Xiaojun Qi
  • Samuel Barrett
  • Ran Chang
چکیده

We propose to combine short-term block-based fuzzy support vector machine (FSVM) learning and long-term dynamic semantic clustering (DSC) learning to bridge the semantic gap in content-based image retrieval. The short-term learning addresses the small sample problem by incorporating additional image blocks to enlarge the training set. Specifically, it applies the nearest neighbor mechanism to choose additional similar blocks. A fuzzy metric is computed to measure the fidelity of the actual class information of the additional blocks. The FSVM is finally applied on the enlarged training set to learn a more accurate decision boundary for classifying images. The long-term learning addresses the large storage problem by building dynamic semantic clusters to remember the semantics learned during all query sessions. Specifically, it applies a cluster-image weighting algorithm to find the images most semantically related to the query. It then applies a DSC technique to adaptively learn and update the semantic categories. Our extensive experimental results demonstrate that the proposed short-term, long-term, and collaborative learning methods outperform their peer methods when the erroneous feedback resulting from the inherent subjectivity of judging relevance, user laziness, or maliciousness is involved. The collaborative learning system achieves better retrieval precision and requires significantly less storage space than its peers. C © 2011 Wiley Periodicals, Inc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semiautomatic Image Retrieval Using the High Level Semantic Labels

Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...

متن کامل

بازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای

Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...

متن کامل

Image retrieval using the combination of text-based and content-based algorithms

Image retrieval is an important research field which has received great attention in the last decades. In this paper, we present an approach for the image retrieval based on the combination of text-based and content-based features. For text-based features, keywords and for content-based features, color and texture features have been used. Query in this system contains some keywords and an input...

متن کامل

An Effective Noise-resistant Long-term Learning Approach for Content-based Image Retrieval

In this paper, we suggest improvements to previous long-term semantic learning methods for content-based image retrieval by improving resistance to noise. The proposed system uses Support Vector Machine learning method to calculate lowlevel feature similarities, and a statistical memory learning method based on the user’s relevance feedback to learn the high-level relationships in the database....

متن کامل

Content Based Radiographic Images Indexing and Retrieval Using Pattern Orientation Histogram

Introduction: Content Based Image Retrieval (CBIR) is a method of image searching and retrieval in a  database. In medical applications, CBIR is a tool used by physicians to compare the previous and current  medical images associated with patients pathological conditions. As the volume of pictorial information  stored in medical image databases is in progress, efficient image indexing and retri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Intell. Syst.

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2011